

Journal of Molecular Catalysis A: Chemical 155 (2000) 183-191

www.elsevier.com/locate/molcata

Desorption behavior of ammonia from TiO_2 -based specimens — ammonia sensing mechanism of double-layer sensors with TiO_2 -based catalyst layers

Yasuhiro Shimizu^{a,*}, Takayuki Okamoto^a, Yuji Takao^b, Makoto Egashira^a

^a Faculty of Engineering, Department of Materials Science and Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

^b Faculty of Environmental Studies, Department of Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

Received 5 October 1998; accepted 1 February 1999

Abstract

Desorption behavior of gases from the NH₃-preadsorbed catalyst and sensing materials used for double-layer semiconductor NH₃ sensors has been investigated under different adsorption and desorption conditions. The 0.5 Ir/TiO₂ catalyst material was found to exhibit mild activity for NH₃ oxidation and high activity for reducing NO to N₂ in an atmosphere containing NH₃ and O₂. This nature was considered to be effective for reducing the interference from NO_x at the vicinity of the interface between the catalyst layer and the In₂O₃ sensing layer doped with 5 mol% MgO. The reduction of the interference led to high NH₃ sensitivity and a normal response to give a resistance decrease upon exposure to NH₃ even at higher temperatures. The abnormal response of a double-layer sensor with a 0.5 Pt/TiO₂ catalyst layer to give a resistance increase upon exposure to NH₃ especially at higher temperatures was confirmed to arise from its high NH₃ oxidation activity and low NO reduction activity. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Adsorption; Desorption; Double-layer sensor; Ammonia-gas sensing

1. Introduction

Ammonia-gas sensing has become increasingly important in controlling systems for various industrial processes and human comfort. Numerous efforts have been directed to developing highly sensitive NH_3 sensors by employing organic membranes, solid electrolytes and semiconductive metal oxides. Among them, most of the semiconductor gas sensors [1–5] reported so far exhibit very small changes in resistance (or conductance) upon exposure to NH_3 , i.e., very low NH_3 sensitivity, except for an Au-loaded WO_3 sensor [6,7]. Interference from NO_x , especially NO_2 , which is an oxidation product of NH_3 and is known to behave as an oxidizing gas [8,9], is presumed to be one of reasons for the low NH_3 sensitivity observed.

Actually, our previous study has shown that the interference from NO_x is serious in detecting NH_3 by semiconductor gas sensors [10]. A single-layer n-type In_2O_3 sensor doped with 5

^{*} Corresponding author.

^{1381-1169/00/\$ -} see front matter @ 2000 Elsevier Science B.V. All rights reserved. PII: S1381-1169(99)00333-7

mol% MgO $\{In_2O_2-MgO (5 mol\%)\}$ and equipped with a pair of electrodes in its innermost region (Fig. 1a and b) exhibited a resistance decrease, i.e., a normal response, upon exposure to 300 ppm NH₃ at a temperature as low as 300°C. However, an abnormal response was observed above 500°C, an abrupt decrease in resistance, followed by a gradual increase to a higher level than that in air, upon exposure to NH₃. Furthermore, an additional increase and a subsequent decrease in resistance were observed after removal of NH₃. Such an abnormal response was further highlighted when the In_2O_3 -MgO (5 mol%) sensor was covered with a TiO₂ loaded with 0.5 wt.% Pt (0.5 Pt/TiO₂) catalyst layer (Fig. 1c). The resistance of this

Fig. 1. Sensor structure. (a) An overview of a single-layer sensor (interior electrodes), (b) a cross section of a single-layer sensor (interior electrodes), (c) a double-layer sensor (interior electrodes) and (d) a double-layer sensor (interface electrodes).

double-layer sensor remained almost constant upon exposure to NH_3 at 370°C, but increased after removal of NH_3 . At 620°C, the resistance increased abruptly upon exposure to NH_3 , and further increased even after removal of NH_3 . Such abnormal response behavior is undoubtedly due to interference from NO_x .

In contrast, we found that a double-layer sensor fabricated by coating an In_2O_3 -MgO (5 mol%) sensing layer with a 0.5 Ir/TiO_2 catalyst layer kept its normal response up to 620°C with relatively high NH₃ sensitivity, although the resistance level just after removal of NH₃ was slightly higher than the original air level. Furthermore, we succeeded to realize much higher NH₃ sensitivity and complete recovery to the original resistance level after removal of NH₂ even at 620°C by changing the electrode position from the innermost region of the sensing layer to the interface between the catalyst layer and the sensing layer (Fig. 1d). These results suggest that the control of oxidation behavior of NH₃ over the catalyst and sensing materials is important in developing highly sensitive NH₃ sensors.

In order to discuss the NH_3 sensing mechanism of the double-layer sensors and then to establish the guidelines on the design of semiconductor NH_3 sensors, the surface chemistry of NH_3 over the catalyst and sensing materials has been investigated by temperature programmed desorption technique (TPD) in the present study.

2. Experimental

2.1. Preparation of specimens

Titanium oxide was prepared by calcining the hydrolysis product of titanium tetrachloride at 1000°C for 1 h in air. The oxide was suspended in an aqueous solution of $H_2PtCl_6 \cdot 6H_2O$, $PdCl_2$, or $IrCl_3 \cdot H_2O$, followed by evaporation to dryness [11,12]. The amount of the metal

loaded was fixed at 0.5 wt.% in every case. The resultant solid was ground, and was subjected to reduction in flowing H_2 at 400°C for 5 h.

In₂O₃-MgO (5 mol%) as a sensing material was prepared in a dry process by mixing and grinding the constituent oxides, then calcining at 1100°C for 1 h in air. This process was repeated five times to ensure the solid solution of MgO into the In₂O₃ lattice [13].

2.2. TPD measurement

TPD spectra of gaseous species from the NH₂-preadsorbed catalyst and sensing specimens were measured in a conventional flow apparatus under different adsorption and desorption conditions. The powder of the specimens was pressed into disks and then crushed to granules (40–60 mesh). The granules of each specimen (3.0 g) was set in the apparatus, and then were preheated at 700°C for 1 h under a flowing gas mixture of 20% O₂ and 80% He at a rate of 30 cm³ min⁻¹. In a cooling procedure the flowing gas was switched to another flowing gas, as indicated below, at 130°C. At the same temperature and in the same flowing gas, the granules were kept for 30 min for adsorption. Then the granules were cooled to room temperature in the same flowing gas. To remove physically adsorbed water, which may be produced by the oxidation of NH_3 with oxygen adsorbates during the adsorption procedure, the granules were again heated at 120°C for 30 min under flowing pure He at a rate of 10 cm³ min⁻¹. The granules were again cooled to room temperature under the same flowing. Thereafter, the TPD spectra were measured up to 700°C at a heating rate of 5°C min⁻¹ in different flowing gases. The adsorption and desorption conditions were as follows:

- Ads: 500 ppm NH₃-0.2% O₂-99.75% He; Des: 100% He
- Ads: 500 ppm NH₃-0.2% O₂-99.75% He; Des: 300 ppm NH₃-20% O₂-79.97% He
- Ads: 500 ppm NO-0.2% O₂-99.75% He; Des: 100% He

The No. 3 condition was conducted to confirm the surface reaction of NO with oxygen adsorbates over the specimens. The desorbed gases were analyzed by gas chromatography mass spectrometry (GC-MS, QP-5000, Shimadzu) every 3 min. The detection limits of NH_3 and NO by GC-MS were about 400 and 200 ppm, re-

Fig. 2. Desorption behavior of gases from NH₃-preadsorbed 0.5 Ir/TiO₂ (ads: 500 ppm NH₃-0.2% O₂-99.75% He, des: 100% He).

spectively. However, GC-MS detection of a low NO_2 concentration was difficult in the present study. Thus, the TPD peaks observed for these species correspond to concentrations higher than the limits.

3. Results

3.1. Desorption behavior of NH_3 under flowing pure He

Fig. 2 shows TPD spectra of gases desorbed from the NH_3 -preadsorbed 0.5 Ir/TiO_2 measured under condition No. 1. The vertical axes represent the GC-MS intensities of the desorbed gases. Thus, the intensity does not directly mean the amount of a gas desorbed, but corresponds to a relative desorption rate of the gas. In addition, the intensity is plotted in an arbitrary unit, since quantitative analysis was not carried out for every gas in the present study. Therefore, the magnitude of the intensity cannot be compared among different gases, but can be a measure of the desorption rate for the same gas.

Under experimental condition No. 1, maximum desorption peaks of NO, NH₃, N₂O, NO₂ and N₂ were observed around 273°, 305°, 320°, 320°, and 349°C, respectively. Although some amounts of NO, N₂O and NO₂ had already been produced during the NH₃-preadsorption procedure, some amounts of these species may be produced by the reaction of the adsorbed NH₃ with oxygen adsorbates during the desorption run to give some contribution to the TPD peaks. On the other hand, N_2 is suggested to be produced by the reduction of NO with NH₃ during the desorption run [14,15]. Thus, the N₂ intensity can be regarded as a measure of the ability for reducing the interference from NO when the specimen is used as a catalyst layer in the double-layer NH₃ sensors.

Desorption behavior of each gas is compared among the specimens in Fig. 3. For easy comparison of the data, the maximum scale of the

Fig. 3. Desorption behavior of gases from the NH_3 -preadsorbed catalyst and sensing materials (ads: 500 ppm NH_3 -0.2% O₂-99.75% He, des: 100% He).

vertical axis is kept constant for each gas throughout the present paper. The desorption of NH₃ was observed with TiO₂ and 0.5 Pd/TiO₂ around 300°C as shown in Fig. 3a, but it was negligible in the cases of 0.5 Pt/TiO₂ and In₂O₃-MgO (5 mol%). Among the specimens tested, 0.5 Ir/TiO₂ exhibited the highest N₂ desorption peak (Fig. 3b). Compared with the results obtained under different conditions shown in the below, the desorption peaks of N₂O, NO and NO₂ were small for every specimen under flowing pure He (Fig. 3c-e).

3.2. Desorption behavior of NH_3 under a flowing gas mixture of NH_3 , O_2 and He

To get information on the desorption behavior of NH₃ in the atmosphere of NH₃ sensitivity measurement, TPD spectra were measured under a flowing gas mixture of 300 ppm NH₃, 20% O₂ and 79.97% He. The NH₃ desorption peaks in Fig. 4a were obviously enlarged in comparison with those in Fig. 3a, except for that from 0.5 Pt/TiO₂. Again, no NH₃ desorption was observed from 0.5 Pt/TiO₂. Additional adsorption of NH₃ during the desorption run up to around 100°C is anticipated to be responsible for the enlargement. Besides 0.5 Ir/TiO_2 , only 0.5 Pt/TiO_2 showed a clear N₂ desorption peak around 163°C, but it was lower than that of 0.5 Ir/TiO_2 , as shown in Fig. 4b. Thus, it is shown that $0.5 \text{ Ir}/\text{TiO}_2$ exhibits the highest activity for reducing NO to N2 among the specimens tested including the sensing material. Desorption peaks of N₂O, NO and NO₂ were also increased for every specimen under condition no. 2, due to both the increased amounts of adsorbed NH₃ and the reaction of gaseous NH₃, which was contained in the carrier gas, with oxygen adsorbates and/or gaseous O_2 . Especially, 0.5 Pt/TiO_2 exhibited the maximum desorption peaks of N₂O, NO and NO₂ around 163°C, and their intensities were much larger than those observed with other specimens. These results imply the high catalytic activity of 0.5 Pt/TiO_2

Fig. 4. Desorption behavior of gases from the NH_3 -preadsorbed catalyst and sensing materials (ads: 500 ppm NH_3 -0.2% O₂-99.75% He, des: 300 ppm NH_3 -20% O₂-79.97% He).

for the oxidation of NH_3 . Relatively large desorption peaks of NO and NO_2 observed with most specimens above 400°C are considered to arise mainly from the reaction of gaseous NH_3 with oxygen adsorbates and/or gaseous O_2 .

3.3. Desorption behavior of NO under flowing pure He

To get information on the oxidation behavior of NO over the specimens and also on the

Fig. 5. Desorption behavior of gases from the NO-preadsorbed catalyst and sensing materials (ads: 500 ppm NO-0.2% O_2- 99.75% He, des: 100% He).

desorption behavior of gases from NO-preadsorbed specimens. TPD spectra were measured under condition No. 3. A desorption peak of N₂O was clearly observed around 274°C only with 0.5 Ir/TiO_2 , as shown in Fig. 5a. The specimen 0.5 Ir/TiO₂ also exhibited a large desorption peak of NO around 226°C, but a small desorption peak of NO₂, as shown in Fig. 5b and c, respectively. In contrast, 0.5 Pt/TiO_2 exhibited the highest desorption peaks of NO and NO₂ among the specimens tested. Furthermore, it is obvious that the desorption peak of NO₂ shifted from 419°C to 306°C by the addition of 0.5 wt.% Pt to TiO₂, as shown in Fig. 5c. These results confirm that the catalytic activity for the oxidation of NO is enhanced by the addition of Pt, and that 0.5 Pt/TiO_2 exhibits the highest activity among the specimens tested.

4. Discussion

Table 1 summarizes the sensing properties to 300 ppm NH_3 in air of double-layer sensors consisting of a catalyst layer, an In_2O_3 -MgO (5 mol%) sensing layer and interface electrodes, and the desorption data from the NH_3 -pread-sorbed catalyst and sensing materials under condition No. 2. The sensing properties were cited from our previous study [10]. Here, the sensitivity is defined as the ratio of sensor resistance in air to that in 300 ppm NH_3 . For reference, the desorption behavior of gases from NH_3 -pread-sorbed TiO₂ is also listed in Table 1.

The maximum sensitivity to 300 ppm NH_3 of a thick film In_2O_3 -MgO (5 mol%) sensor equipped with a pair of electrodes on the sensor surface was 1.3 at most, and was observed at 300°C. The coating of this sensor surface with a catalyst layer, i.e., fabrication of a double-layer sensor with interface electrodes, resulted in an increase in NH_3 sensitivity. However, the magnitude of the sensitivity enhancement was markedly dependent on the kind of the catalyst Table 1

The sensing properties to 300 ppm NH_3 of double-layer sensors consisting of a catalyst layer, an In_2O_3 -MgO (5 mol%) sensing layer and interface electrodes, and the desorption data of gases from the NH_3 -preadsorbed catalyst and sensing materials

Catalyst layer	$\frac{\text{NH}_3 \text{ sensing}}{\text{properties}}$		Intensity (a.u.) and temperature (°C) of desorption ^a									
			NH ₃		N ₂		N ₂ O		NO		NO ₂	
	$\kappa_{\rm M}^{\rm s}$	$T_{\rm M}$ (°C)	I	Т	I	Т	Ī	Т	I	Т	Ī	Т
none ^d	1.3	300	1.0×10^{4}	257	2.8×10^{3}	462	5.2×10^{3}	413	4.9×10^{3}	560	2.6×10	115
0.5 Ir/ TiO ₂	64–97	470	1.2×10^4	222	$8.0 imes 10^4$	285	4.0×10^4	285	1.5×10^4	605	1.7×10^{2}	285
0.5 Pd/ TiO ₂	16–23	530	1.5×10^4	224	1.4×10^4	288	1.4×10^4	288	7.3×10^{3}	288	5.7 imes 10	336
0.5 Pt/ TiO ₂	3.0-12	340	no	-	2.3×10^4	163	7.9×10^4	163	1.4×10^4	163	3.3×10^{2}	593
TiO ₂	-	_	$1.6 imes 10^4$	248	$8.5 imes 10^3$	311	$1.8 imes 10^4$	311	$1.1 imes 10^4$	343	1.9×10^2	692

^aTPD spectra were measured under a flowing gas mixture of 300 ppm NH₃, 20% O₂ and 79.97% He by employing materials subjected to NH₃ preadsorption under a flowing gas mixture of 500 ppm NH₃, 0.2% O₂ and 99.75% He.

^bMaximum sensitivity to 300 ppm NH₃.

^cOperating temperature for $k_{\rm M}$.

 ${}^{d}In_{2}O_{3}-MgO$ (5 mol%) as a sensing material.

layer. The most significant improvement was achieved with 0.5 Ir/TiO₂ at 470°C. In addition, the resistance of the double-layer sensor with a 0.5 Ir/TiO_2 catalyst layer recovered to the original air level after removal of NH₃ over the whole temperature range of 340° to 620°C [10]. Although the coating with 0.5 Pt/TiO₂ led to a slight increase in sensitivity at 340°C, the resistance of the double-layer sensor after removal of NH₃ became higher than the original air level even at this temperature. This behavior became more significant at higher temperatures. Above 530°C the resistance in 300 ppm NH₃ was higher than the original air level, and a further increase in resistance was observed just after removal of NH₃. In the case of the double-layer sensor with a $0.5 \text{ Pd}/\text{TiO}_2$ catalyst layer, such an abnormal response was not observed up to 620°C, whereas the sensitivity enhancement was less significant than that for the coating with 0.5 Ir/TiO_2 .

Based on the present desorption behavior of gases from the NH_3 -preadsorbed materials, the reaction of NH_3 in the double-layer sensors and their NH_3 sensing mechanism are discussed below. The following reactions are likely to

occur over the present catalyst and sensing materials.

$$2NH_3 + 4O^-(ad) \rightarrow N_2O + 3H_2O + 4e^-$$
 (1)

$$2NH_3 + 5O^-(ad) \rightarrow 2NO + 3H_2O + 5e^-$$
 (2)

$$NO + 1/2O_2 \rightarrow NO_2 \tag{3}$$

$$NO_2 + e^- \rightarrow NO_2^-(ad) \tag{4}$$

$$2NH_3 + 2NO + O^-(ad) \rightarrow 2N_2 + 3H_2O + e^-$$
(5)

$$2NH_{3} + 2NO + 3O^{-}(ad) \rightarrow 2N_{2}O + 3H_{2}O + 3e^{-} \qquad (6)$$
$$2NH_{3} + N_{2}O + 2O^{-}(ad) \rightarrow 2N_{2} + 3H_{2}O + 2e^{-} \qquad (7)$$

Here, $O^-(ad)$ represents oxygen adsorbate, and reactions of NH_3 with gaseous O_2 are ruled out due to no direct electronic interaction with the sensing material.

In the case of the double-layer sensor with interface electrodes employed in our previous study, it is of no doubt that chemical reactions in the vicinity of the interface between the catalyst and the sensing layer primarily regulate the electrical properties of the sensing layer.

When 0.5 Ir/TiO_2 is employed as a catalyst layer, most of NH₃ is anticipated to diffuse into the interface through pores in the catalyst laver due to relatively low oxidation activity of the catalyst layer itself, as schematically shown in Fig. 6a. Then the resistance of the sensing material, n-type In₂O₃-MgO (5 mol%), decreases due to the reactions (1) and (2) at the interface. The N₂O produced according to Eq. (1) is suggested to exhibit weak electronic interaction with the sensing material, and most of them go out of the sensor. In contrast, the NO produced according to Eq. (2) may directly affect the electronic properties of the sensing material by its chemisorption in the form of $NO^{-}(ad)$ or $NO^{+}(ad)$. Another possibility is that NO₂ produced by the oxidation of NO with gaseous oxygen may chemisorb on the sensing material and then increase the sensor resistance according to Eqs. (3) and (4). However, the 0.5 Ir/TiO₂ catalyst layer is considered to exhibit high activity for reducing NO to N₂ under the presence of NH_3 and O_2 according to Eq. (5) or

Fig. 6. Schematic drawing of the reactions of NH_3 in the doublelayer sensors with (a) a 0.5 Ir/TiO₂ catalyst layer and (b) a 0.5 Pt/TiO₂ catalyst layer.

Eqs. (6) and (7). The progress of the reactions (2) and (5)–(7) results in a decrease in the sensor resistance, leading to high normal NH_3 sensitivity of the double-layer sensor with the 0.5 Ir/TiO₂ catalyst. Therefore, it is concluded that the high NH_3 sensitivity and the normal response arise mainly from the high activity of 0.5 Ir/TiO₂ for reducing NO to N₂.

On the other hand, most of NH₃ is anticipated to be oxidized to N_2O , NO and NO_2 during the diffusion through the 0.5 Pt/TiO_2 catalyst layer due to its high NH₃ oxidation activity, as schematically shown in Fig. 6b. This is supported by the fact that no NH₃ desorption peak is observed in the TPD spectrum, whereas large desorption peaks of N₂O and NO are observed even at low temperatures, as summarized in Table 1. This is one of reasons for the lower NH₃ sensitivity of the double-layer sensor with the 0.5 Pt/TiO_2 catalyst layer than the sensor with the 0.5 Ir/TiO₂ catalyst, because the steady-state NH₃ concentration at the interface of the former becomes lower than that of the latter. Especially at temperatures higher than 350°C, the largest NO₂ desorption peak was observed with 0.5 Pt/TiO_2 among the specimens tested (Fig. 4e). Furthermore, 0.5 Pt/TiO₂ is less active than $0.5 \text{ Ir}/\text{TiO}_2$ for reducing NO to N_2 . Thus, the double-layer sensor with the 0.5 Pt/TiO₂ catalyst layer is likely interfered from NO_x, leading to an abnormal response to NH₃ even at low temperatures. These results confirm that the abnormal response to NH₃ arises from both the high activity for NH₃ oxidation and the low activity for NO reduction of 0.5 Pt/TiO_2 .

Due to the mild NH_3 oxidation activity of 0.5 Pd/TiO₂, in comparison with 0.5 Pt/TiO₂, the double-layer sensor with the 0.5 Pd/TiO₂ catalyst layer is anticipated to exhibit the intermediate NH_3 sensing properties between the sensors with 0.5 Ir/TiO₂ and 0.5 Pt/TiO₂. Based on the above results, it may be argued that a thicker catalyst layer enhances the interference from NO_x , even if its catalytic activity for NH_3 oxidation is moderate.

5. Conclusion

Comparison of the TPD spectra from the NH₂-preadsorbed catalyst and sensing materials under a flowing gas mixture of NH₃, O₂ and He has revealed that the 0.5 Ir/TiO₂ catalyst material exhibited the highest N₂ desorption peak and therefore the highest activity for reducing NO to N₂. In contrast, 0.5 Pt/TiO₂ exhibited the largest desorption peaks of N₂O, NO and NO_2 around 163°C and a further large NO_2 desorption peak above 370°C, showing its high activity for NH₃ oxidation and low activity for NO reduction. Therefore, it is concluded that the high NH₃ sensitivity of a double-layer sensor with a 0.5 Ir/TiO₂ catalyst layer to give normal decreases in resistance, which was reported in our previous study, arises mainly from its high activity for reducing NO to N₂, i.e., reducing interference from NO_x to the sensor response. It is also confirmed that the complex response to NH₃ of a double-layer sensor with a 0.5 Pt/TiO_2 catalyst layer to give decreases or increases in resistance arises from both the high activity for NH₃ oxidation and the low activity for NO reduction.

To realize high NH_3 sensitivity with semiconductor gas sensors, therefore, it is important to design the catalyst and sensing materials so as to exhibit moderate NH_3 oxidation activity and high NO to N_2 reduction activity. Furthermore, the sensor configuration such as electrode position and thickness of the catalyst and sensing layers is also important.

References

- [1] P.J. Shaver, Appl. Phys. Lett. 11 (1967) 255.
- [2] H. Nanto, T. Minami, S. Takata, J. Appl. Phys. 60 (1986) 482.
- [3] G. Rosse, M. Ghers, J. Lebigot, J. Guyader, Y. Laurent, Y. Colin, Sens. Actuators 14 (1988) 133.
- [4] P.T. Moseley, D.E. Williams, Sens. Actuators, B 1 (1990) 113.
- [5] V.V. Malyshev, A.V. Eryshkin, E.A. Koltypin, A.E. Varfolomeev, A.A. Vasiliev, Sens. Actuators, B 18–19 (1994) 434.
- [6] T. Maekawa, J. Tamaki, N. Miura, N. Yamazoe, Chem. Lett. 1992 (1992) 639.
- [7] M. Ando, T. Tsuchida, S. Suto, T. Suzuki, C. Nakayama, N. Miura, N. Yamazoe, J. Ceram. Soc. Jpn. 104 (1996) 1112.
- [8] M. Akiyama, J. Tamaki, N. Miura, N. Yamazoe, Chem. Lett. 1991 (1991) 1611.
- [9] G. Sberveglieri, L. Depero, S. Gropelli, P. Nelli, Sens. Actuators, B 26–27 (1995) 89.
- [10] Y. Takao, K. Miyazaki, Y. Shimizu, M. Egashira, J. Electrochem. Soc. 141 (1994) 1928.
- [11] Y. Takao, Y. Iwanaga, Y. Shimizu, M. Egashira, Sens. Actuators, B 10 (1993) 229.
- [12] Y. Shimizu, A. Kawasoe, Y. Takao, M. Egashira, in: H.U. Anderson, M. Liu, N. Yamazoe (Eds.), Ceram. Sens. III, Electrochem. Soc. Proc. 96–271996, p. 117.
- [13] Y. Takao, Y. Miya, Y. Tachiyama, Y. Shimizu, M. Egashira, Denki Kagaku 58 (1990) 1162.
- [14] E.T.C. Vogt, A. Boot, A.J. van Dillen, J.W. Geus, F.J.J.G. Janssen, F.M.G. van den Kerkhof, J. Catal. 114 (1988) 313.
- [15] R.B. Bjorklund, C.U.I. Odenbrand, J.G.M. Brandin, L.A.H. Andersson, B. Liedberg, J. Catal. 119 (1989) 187.